python进行表格处理时,经常遇到空值需要做特定替换,pandas专门提供了这样的功能。
fillna()方法
函数形式:fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)[^1]
- value:用于填充的空值的值。
- method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None。定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。
- axis:轴。0或’index’,表示按行删除;1或’columns’,表示按列删除。
- inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。
- limit:int, default None。如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)
- downcast:dict, default is None,字典中的项为,为类型向下转换规则。或者为字符串“infer”,此时会在合适的等价类型之间进行向下转换,比如float64 to int64 if possible。
示例
matrix_data.fillna(value=0)
替换前
替换后
[^1]: https://blog.csdn.net/qq_17753903/article/details/89892631